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Mechanisms of Alzheimer’s disease (AD) and its putative prodromal stage, amnestic mild cognitive impairment (aMCI), involve
the dysregulation of multiple candidate molecular pathways that drive selective cellular vulnerability in cognitive brain regions.
However, the spatiotemporal overlap of markers for pathway dysregulation in different brain regions and cell types presents a
challenge for pinpointing causal versus epiphenomenal changes characterizing disease progression. To approach this problem, we
performed Weighted Gene Co-expression Network Analysis and STRING interactome analysis of gene expression patterns quantified
in frontal cortex samples (Brodmann area 10) from subjects who died with a clinical diagnosis of no cognitive impairment, aMCI, or
mild/moderate AD. Frontal cortex was chosen due to the relatively protracted involvement of this region in AD, which might reveal
pathways associated with disease onset. A co-expressed network correlating with clinical diagnosis was functionally associated with
insulin signaling, with insulin (INS) being the most highly connected gene within the network. Co-expressed networks correlating
with neuropathological diagnostic criteria (e.g., NIA-Reagan Likelihood of AD) were associated with platelet-endothelium-leucocyte
cell adhesion pathways and hypoxia-oxidative stress. Dysregulation of these functional pathways may represent incipient alterations
impacting disease progression and the clinical presentation of aMCI and AD.
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Introduction
Alzheimer’s disease (AD) results in a significant depar-
ture from the trajectory of normal cognitive aging and
is the most common cause of dementia. Diagnostic cri-
teria of AD include the presence of extracellular senile
plaques, which are fibrillar aggregates of amyloid-β (Aβ)
peptides often embedded with dystrophic neurites, and
intracellular neurofibrillary tangles (NFTs) containing
aggregates of hyperphosphorylated, misfolded moieties
of the protein tau (Hyman et al. 2012; Jack Jr et al.
2016). The mechanisms underlying the pathobiology of
AD remain elusive as the vast majority of cases are spo-
radic, arising from an unknown combination of genetic
and environmental factors (Mufson, Ikonomovic, et al.
2016; Jack Jr et al. 2018). This lack of clarity on disease

etiology is compounded by preclinical and prodromal
stages that may span decades on a heterogenous back-
ground of individual reserve, resistance, and resilience
(Montine et al. 2019). With respect to the potential molec-
ular and cellular differences underlying disease hetero-
geneity, we and others have shown in cross-sectional
postmortem tissue studies that the progression of AD is
characterized by the dysregulation of multiple gene fami-
lies in corticopetal and corticocortical projection neurons
regulating cognitive function (Dunckley et al. 2006; Gins-
berg et al. 2006; Counts et al. 2013; Kelly et al. 2017). How-
ever, the spatiotemporal overlap of these gene expression
changes in different brain regions and cell types presents
a challenge for pinpointing causal versus epiphenomenal
pathway alterations during disease progression.
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As bioinformatic inquiry has developed along with
expression profiling strategies, Weighted Gene Co-
expression Network Analysis (WGCNA) offers an attrac-
tive option for examining multifactorial disease pre-
sentations to meet this challenge (Miller et al. 2013;
Seyfried et al. 2017; Alldred et al. 2021). This integrated
systems biology approach allows for the unbiased
interrogation of gene expression datasets to cluster genes
into modules exhibiting correlated levels of expression.
Highly correlated genes within discrete modules can
then be examined for overrepresentation within specific
endophenotypes and functional pathways. To this end,
we analyzed gene expression patterns across the AD
spectrum via microarray analysis of frozen frontal
cortex samples (Brodmann area [BA] 10) from subjects
who died with a clinical diagnosis of no cognitive
impairment (NCI), amnestic mild cognitive impairment
(aMCI, a putative prodromal AD stage), or mild/moderate
AD. Frontal cortex was chosen for analysis given the
relatively protracted involvement of this region in AD
pathogenesis, which might reveal functional pathways
associated with incipient pathological changes. Alter-
natively, given several lines of evidence that frontal
cortex undergoes neuroplastic remodeling in the face
of mounting pathology during MCI (DeKosky et al. 2002;
Counts et al. 2006; Bell et al. 2007; Williams et al. 2009;
Bossers et al. 2010; Weinberg et al. 2015), analysis of
this region might also help reveal pathways mediating
resilience. These expression patterns may likewise
influence the role of frontal cortex as a functional hub of
resting state networks such as the default mode network
(Liu et al. 2013; Moayedi et al. 2015; DeSerisy et al. 2021),
which mediates memory and attentional functions and
falters in AD (Simic et al. 2014; Dillen et al. 2017). Hence,
the identified networks and their molecular components
may provide new clues to disease-modifying therapeutic
targets for AD.

Materials and Methods
Subjects
Postmortem tissue samples were obtained from partic-
ipants in the Rush Religious Order Study (RROS), a lon-
gitudinal clinical pathologic study of aging and demen-
tia in elderly Catholic clergy members. Details of RROS
clinical and neuropathologic evaluations and diagnos-
tic criteria are published (Bennett et al. 2002; Counts
et al. 2006; Schneider et al. 2009). Briefly, RROS par-
ticipants undergo an annual neurological examination
and cognitive performance testing using the Mini-Mental
State Exam (MMSE) and 19 additional neuropsychologi-
cal tests referable to five cognitive domains: orientation,
attention, memory, language, and perception (Bennett
et al. 2002). A Global Cognitive Score (GCS) consisting
of a composite z-score calculated from this test battery
is then determined for each participant (Bennett et al.
2002). The diagnosis of dementia due to AD follows the
revised recommendations from the National Institute on

Aging-Alzheimer’s Association workgroups on diagnos-
tic guidelines for AD (McKhann et al. 2011). The aMCI
population is defined as subjects who exhibited impair-
ment in episodic memory—and possibly other cognitive
domains—but did not meet the criteria for AD or demen-
tia, which is consistent with criteria used by others in
the field (Morris et al. 2001; Petersen 2004; Abner et al.
2012). Cases with clinically and/or neuropathologically
diagnosed comorbidities, such as large strokes, parkin-
sonism, Lewy body dementia, frontotemporal demen-
tia, hippocampal sclerosis, or major depressive disorder,
were excluded from the study.

A board-certified neuropathologist evaluated all cases
while blinded to clinical diagnosis (Schneider et al.
2009). Designations of “normal” (with respect to AD or
other dementing processes), “possible AD,” “probable
AD,” or “definite AD” were based on semi-quantitative
estimation of neuritic plaque density, an age-related
plaque score, and presence or absence of dementia as
established by the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD; Mirra et al. 1991). Braak
scores based on the staging of NFT pathology were
established for each case (Braak and Braak 1991). Cases
also received an NIA-Reagan Likelihood-of-AD diagnosis
based on neuritic plaque and tangle pathology (Hyman
and Trojanowski 1997). The “ABC” algorithm for the
diagnosis of AD (Montine et al. 2012) is currently being
applied to all RROS cases.

mRNA Extraction and Microarray Processing
Total RNA was isolated from frozen postmortem frontal
cortex (BA 10) samples of NCI (n = 13), aMCI (n = 11),
and mild/moderate AD (n = 12) cases that met inclu-
sion/exclusion criteria. Tissue blocks (∼50 mg) were
excised on dry ice and, using best practices for RNA
handling, total RNA was extracted from the tissue using
the Ambion Total RNA Isolation Kit (Ambion/Life Tech-
nologies). Tissue was added to a 10× volume of the kit’s
lysis/binding buffer, and homogenates were prepared on
ice using a Qiagen TissueLyser (Qiagen) set to 20 Hz for
1 min. Total RNA was extracted from the homogenate
by phase separation using acid-phenol/chloroform.
Sample quantification was performed by a Nanodrop
spectrophotometer (ThermoFisher). RNA quality was
assessed using an Agilent Bioanalyzer (Agilent) and all
samples selected for analysis displayed RIN values ≥7.
Double stranded cDNA was synthesized using a poly(A)
primer to enrich for mRNA templating and subsequently
labeled with Cy3 using Nimblegen’s One-color DNA
Labeling Kit (Roche Diagnostics); 4 ug of labeled cDNA
was then hybridized to Nimblegen 12 × 135 K human
arrays for 18 h at 42 ◦C. Analysis was performed on
a GenePix 4200A scanner (Molecular Devices). Probe
intensity levels were quantified with RMA preprocessing
using NimbleScan v2.5 software. The microarray dataset
has been uploaded to the Gene Expression Omnibus
database (accession #GSE185909).
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Weighted Gene Co-expression Network Analysis
Array-specific batch effects and variance attributable to
postmortem interval (PMI) were removed via ComBat
(Bioconductor, sva v3.4). WGCNA (v1.51) was used to
group genes expressed similarly into modules following
the workflow of Horvath and colleagues: (https://
horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/) (Langfelder and Horvath
2008). Briefly, power = 10 was chosen for the soft-
thresholding as it achieved an R2 of 0.8 and had high con-
nectivity (mean K = 136.0). Color-coded modules whose
eigen-genes had correlations >0.85 were combined to
limit the total number of clusters examined. Spearman
correlation was used to identify which modules and
genes had evidence of being associated with the various
diagnostic scales (nominal P < 0.05). Genes unassigned
to any specific trait were grouped into the gray module.
Heatmaps were used to visualize differences (Fig. 1).
Geneset enrichment (MetaCore, Clarivate) was used to
determine if modules were enriched for features relevant
to clinical and/or pathological AD diagnostic criteria.
Pathway hub genes were identified by MetaCore as
genes with at least five edges in the pathway network.
WGCNA hub genes were identified based on the highest
kME, a measure of module connectivity (Langfelder
and Horvath 2008). Finally, protein–protein interaction
networks were created for each significant module by
uploading their respective gene lists (gene symbols) to
the STRING V11 database (Szklarczyk et al. 2019). The
STRING database also provides gene ontology and KEGG
pathway enrichment analyses, which were applied to
each module and reported here in Tables 3 and 4, as well
as Supplementary Table 1. Database sources that did not
return significant results were not reported in the Tables.
All statistical analyses were conducted using R v 3.3.2
(https://cran.r-project.org/).

Results
Subject Characteristics
Demographic, clinical, and neuropathological character-
istics of the 36 RROS subjects are summarized in Table 1.
There were no significant differences in age, sex, years of
education, PMI, RIN values, or possession of at least one
apolipoprotein (ApoE) ε4 allele. In contrast, comparisons
of clinical neuropathologic variables validated subject
stratification into the three diagnostic groups. Subjects
with AD had significantly lower MMSE scores (P < 0.001)
and GCS (P < 0.0001) compared with the NCI and aMCI
groups. Neuropathologically, the NCI group was quite
heterogeneous and overlapped with the aMCI group, sug-
gesting the presence of resilient subjects (Bennett et al.
2006; Mufson, Malek-Ahmadi, et al. 2016; Montine et al.
2019). For instance, NCI subjects met the criteria for
Braak NFT stages I/II (31%) or III/IV (69%), whereas aMCI
was categorized as Braak NFT stages I/II (36%) and III/IV
(45%), or IV/V (19%). Distribution of Braak scores was
significantly different between the AD and the NCI/aMCI

groups (P = 0.007). In contrast, the AD group displayed
a significantly greater degree of AD pathology than the
NCI group based on NIA-Reagan criteria (P = 0.007), and
CERAD neuritic plaque scores were higher in the AD
group compared with the aMCI group (P = 0.04) (Table 1).

WGCNA and STRING Analysis of Microarray Data
WGCNA identified 3 modules out of 24 that were sig-
nificantly correlated with clinical or neuropathological
disease stage (Fig. 1). Significantly enriched pathways
and hub genes for each of these modules are summarized
in Table 2. The green module negatively correlated
with clinical diagnostic group (r = −0.33, P = 0.047) and
was significantly enriched for genes associated with
insulin signaling. The midnight blue module positively
correlated with both CERAD (r = 0.34, P = 0.045) and NIA-
Reagan (r = 0.38, P = 0.021) diagnostic criteria and was
enriched for genes associated with “cell adhesion related
to platelet-endothelium-leucocyte interactions.” Finally,
the gray module, which represents genes that were
unassigned to other modules and therefore not co-
expressed, was nonetheless also positively associated
with CERAD (r = 0.43, P = 0.0084) and NIA-Reagan (r = 0.5,
P = 0.021) criteria, as well as with Braak NFT stage (r = 0.51,
P = 0.0015). Genes in this module were significantly
enriched for hypoxia and oxidative stress. None of the
modules correlated with continuous variables including
age, MMSE, or GCS (Fig. 1).

STRING network analysis was performed to predict
physical interactions of the proteins encoded by each
of the genes within each module that were significantly
associated with any of the diagnostic scales (Szklarczyk
et al. 2021). Of the 235 genes in the green module, STRING
analysis identified 207 gene products/proteins with 131
interactions (Fig. 2), which was significantly more than
the expected 90 (P < 0.0001). The insulin gene (INS) was
the most integral part of the network with 14 different
interactions, while cyclin-dependent kinase inhibitor 2 A
(CDKN2A) had the second most interactions with eight
(including INS); both are consistent with the hub genes
identified via MetaCore. The STRING network analysis
also determined that the green module was significantly
enriched for five biological processes, four molecular
functions, and the homeodomain (Table 3). Most of these
enrichments were related to the regulation of transcrip-
tion, which was intriguing given the identification of
the zinc finger protein gene ZNF837 as the top module
hub gene via WGCNA (Table 2). Of the 80 genes in the
midnight blue module, 68 encoded proteins and 23 inter-
actions were identified via STRING. Despite no individual
protein having more than two interactions, the midnight
blue module had more interactions than what was
expected in a set of proteins of similar size (14 expected
edges, P = 0.02, Fig. 3). This module also had a greater
number of significant enrichments than the green and
gray modules, with the most notable being involved in G
protein-coupled signaling and protein–protein binding

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac001#supplementary-data
https://cran.r-project.org/


Beck et al. | 5111

Figure 1. Identification of module-trait relationships of co-expressed genes in frontal cortex (BA 10) across the AD spectrum. Heatmap colored by the
strength of the spearman correlation between each module’s eigengene and demographic, clinical, or neuropathological variables. Shown are Spearman
coefficients with P-values in parentheses.

(e.g., Kelch repeats) (Table 4). Olfaction and sensory
perception were also enriched, consistent with the
identification of the olfactory receptor gene OR5D13 as
the top module hub gene (Table 2). Finally, of the 28
genes in the gray module, which lacked co-expression,
26 encoded proteins and 2 interactions were identified,
which was exactly the number of expected edges in a ran-
dom set of 26 proteins (Supplementary Fig. 1). The gray

module was significantly enriched for one molecular
process and four protein domains related to glutathione
S-transferase activity (Supplementary Table 1), which
aligns with the module MetaCore pathway enrichment
related to hypoxia and oxidative stress (Table 2). Finally,
pair-wise comparisons of gene expression patterns
among the three diagnostic groups are available in
Supplementary Tables 2–4.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac001#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac001#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac001#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac001#supplementary-data
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Figure 2. Protein–protein interactions in the green module associated with clinical diagnosis by STRING analysis. All 235 genes in the module were
queried and only those with connectivity to at least one other gene are shown. INS and CDKN2A were the most connected genes in the module.

Discussion
The present study applied unbiased biological network
analytical tools to a microarray dataset comparing gene
expression profiles in frontal cortex from participants in
the RROS who died with a range of cognitive abilities and
neuropathological burden. The most compelling WGCNA
outcome was the identification of 225 co-expressed
genes within the green module that inversely correlated
with clinical disease severity, as categorized by clinical
diagnostic group (Fig. 1). MetaCore functional analysis
revealed that insulin signaling was the only enriched

pathway in this module (Table 2), whereas STRING
network analysis showed that INS was the most highly
connected gene in the module (Fig. 2, Table 3). Local brain
insulin expression has been noted in rodent and human
cerebral cortex and hippocampus (Grunblatt et al. 2007;
Mehran et al. 2012; Csajbok et al. 2019), where it appears
to be secreted by GABAergic neurogliaform cells (Molnar
et al. 2014). Furthermore, type 2 diabetes mellitus (T2DM)
is a risk factor for dementia, and AD progression is
characterized by insulin resistance including defective
brain insulin and insulin-like growth factor (IGF-1)
signaling, as evidenced by reduced insulin receptor
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Figure 3. Protein–protein interactions in the midnight blue module associated with CERAD and NIA-Reagan diagnostic indices. All 80 genes in the
module were queried.

binding and subsequent loss of insulin receptor substrate
1 and 2 activation and downstream Pi3K/Akt signaling
(Talbot et al. 2012; Kellar and Craft 2020; Ferreira
2021). Moreover, insulin-sensitizing drugs have shown
therapeutic promise for the disease (Arnold et al. 2018;
Hayden et al. 2019). These data support the hypothesis
that perturbations in insulin metabolism/signaling and
brain insulin resistance are associated with the extent
of cognitive impairment across the AD spectrum and
may have diagnostic and therapeutic relevance in
terms of generalized public health in the elderly. These
changes in gene expression related to glucose utilization
and energy metabolism could contribute to reductions
in fluorodeoxyglucose positron emission tomography
observed in the MCI and AD brain. Given recent evidence
that microglial activation state may determine cerebral
fluorodeoxyglucose uptake dynamics, it is also tempting
to speculate that alterations in innate immunity may

mediate the putative impact of INS signaling in the early
stages of AD (Xiang et al. 2021).

Interestingly, the second most highly connected gene
within the insulin pathway, CDKN2A, also plays an impor-
tant role in the control of glucose and energy homeosta-
sis in addition to its canonical role in cell cycle regulation
(see below) (Drexler 1998). Loss-of-function mutations
in this gene leading to haploinsufficiency affect glucose
levels and insulin sensitivity (Pal et al. 2016; Kahoul et al.
2020), whereas genome wide association studies identi-
fied several single nucleotide polymorphisms (SNPs) in
CDKN2A and upstream noncoding sequences that are
risk factors for obesity and T2DM (Grant et al. 2010;
Mehramiz et al. 2018; Kahoul et al. 2020). Specific SNPs in
CDKN2A were associated with linkage of sporadic AD to
chromosome 9 (Zuchner et al. 2008), although this asso-
ciation was not confirmed in a separate cohort (Tedde
et al. 2011).
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Table 3. Green module interactions—functional annotation

Enrichment type
(database)

Description Observed
genes/background genes

Strength P-value∗

biological process (GO) Pattern specification process 19/409 0.64 0.00041
regionalization 14/313 0.63 0.0146
regulation of transcription by RNA polymerase II 51/2633 0.26 0.0146
regulation of transcription, DNA-templated 63/3661 0.21 0.0278
anatomical structure morphogenesis 40/1992 0.28 0.0278
tube development 22/793 0.42 0.0278

molecular function (GO) transcription regulator activity 44/2069 0.3 0.003
DNA-binding transcription factor activity, RNA
polymerase II-specific

36/1633 0.32 0.0046

DNA-binding transcription factor activity 38/1749 0.31 0.0046
RNA polymerase II transcription regulatory region
sequence-specific DNA binding

18/647 0.42 0.0276

protein domain (SMART) homeodomain 10/241 0.59 0.0349

Abbreviations: GO, Gene Ontology; SMART, Simple Modular Architecture Research Tool. aCorrected via Benjamini–Hochberg False Discovery Rate (FDR).

Table 4. Midnight blue module interactions—functional annotation

Enrichment type (database) Description Observed
genes/background genes

Strength P-value∗

Biological process (GO) Sensory perception of chemical stimulus 10/487 0.77 0.0134
detection of chemical stimulus involved in sensory
perception

9/431 0.78 0.0175

sensory perception 12/901 0.58 0.0223
G protein-coupled receptor signaling pathway 14/1247 0.51 0.0256
positive regulation of Rho protein signal
transduction

3/28 1.49 0.0414

mesenchymal-epithelial signaling 2/4 2.16 0.0414
Molecular function (GO) G protein-coupled receptor activity 14/824 0.69 0.00024

signaling receptor activity 17/1429 0.53 0.00084
odorant binding 4/84 1.14 0.0136
olfactory receptor activity 7/385 0.72 0.0187

Protein domain (InterPro) G protein-coupled receptor, rhodopsin-like 12/668 0.71 0.00061
GPCR, rhodopsin-like, 7TM 12/676 0.71 0.00061
Olfactory receptor 7/384 0.72 0.0244

Protein domain (Pfam) 7 transmembrane receptor (rhodopsin family) 12/672 0.71 0.00033
BTB and C-terminal Kelch 3/60 1.16 0.0266
Galactose oxidase, central domain 3/44 1.29 0.0266
Olfactory receptor 7/417 0.68 0.0266
Kelch motif 3/52 1.22 0.0266
Kelch motif 3/69 1.1 0.0306
Zinc carboxypeptidase 2/23 1.4 0.0443

Protein domain (SMART) Kelch 3/56 1.19 0.0427
Zinc peptide 2/17 1.53 0.0427
BTB and C-terminal Kelch 3/59 1.17 0.0427

Pathway (Reactome) Signal Transduction 13/1358 0.44 0.0128
annotated keywords (UniPro) G-protein-coupled receptor 14/778 0.71 0.0000766

Glycoprotein 32/4352 0.33 0.00033
Receptor 17/1423 0.54 0.00033
Sensory transduction 9/560 0.67 0.0051
Olfaction 7/396 0.71 0.014
Cell membrane 22/3214 0.29 0.0238
Kelch repeat 3/71 1.08 0.0473

Abbreviations: GO, Gene Ontology; Pfam, Protein family; SMART, Simple Modular Architecture Research Tool. aCorrected via Benjamini–Hochberg FDR.

With respect to cell cycle regulation, CDKN2A—
along with pathway genes CDKN2B and MYOD1—are
functionally implicated in maintaining cell cycle arrest
at G1 and a differentiated cellular phenotype (Drexler
1998; Sabourin et al. 1999). Given the negative corre-
lation between the green module and clinical severity,
dysregulation of these genes could be related to markers

of aneuploidy and aberrant cell cycle re-entry that have
long been observed in selectively vulnerable neurons
in postmortem AD brain tissue (Vincent et al. 1996;
Herrup and Arendt 2002; Park et al. 2007). Intriguingly,
insulin/IGF-1 signaling also has been linked to cell
cycle regulation and oncogenesis in peripheral cells
(Teng et al. 1976; Lai et al. 2001; Mairet-Coello et al.



5116 | Cerebral Cortex, 2022, Vol. 32, No. 22

2009). Pathway correlations with NAGLU, which degrades
heparin sulfate (Yogalingam et al. 2000), are interesting
given observations that T2DM is associated with reduced
heparin sulfate levels (Rohrbach et al. 1982; Makino et al.
1992), thus impacting basement membrane permeability
and coagulation (Shionoya 1927).

Mechanisms underlying the potential association
of insulin signaling pathways with clinical disease
progression are not clear, yet STRING interactome
analysis highlighted transcriptional regulation as a
major node of the enriched molecular and biological pro-
cesses connecting module genes, and the homeodomain
was the only protein domain identified (Table 3). This
theme was complemented by processes related to
pattern specification, suggesting that disturbances in
coordinated genomic and transcriptional regulatory
sequences in frontal cortex may contribute to putative
insulin signaling and related pathway (e.g., cell cycle
regulation or heparin metabolism) dysfunction during
AD progression. Interestingly, the most highly correlated
green module hub gene was ZNF837, a member of the
C2H2-type-zinc finger family of transcription factors
(Fedotova et al. 2017). While the protein function of
this specific ZNF gene is unknown, the presence of the
zinc finger motif is associated with diverse functions
including transcription, mRNA trafficking, zinc and
iron-sensing, ubiquitin-mediated protein degradation,
cytoskeletal function, DNA repair, and cell adhesion
(Laity et al. 2001).

In contrast to the green module, two additional
modules were positively associated with increasing
amyloid and tau pathology. The midnight blue module
correlated with CERAD and NIA-Reagan diagnostic
criteria (P < 0.05), and “cell adhesion related to platelet-
endothelium-leucocyte interactions” emerged as the
only significantly enriched pathway via MetaCore
(Table 2). The prominence of this functional network
in the module may provide additional insights for
the growing literature implicating vascular integrity in
disease progression (Hachinski et al. 2019; Carare et al.
2020). Leucocyte adhesion to the vascular endothelium
is a hallmark of the inflammatory process (Wahl
et al. 1996), leveraging the sequential activation and
binding of adhesion molecules and their receptors for
transendothelial migration into the interstitium. In
contrast, platelet adhesion to activated endothelial cells
is a hallmark of hemostasis following vascular injury
(Margraf and Zarbock 2019). Among the pathway hub
genes identified, ITGA4 is a ubiquitous integrin subunit
expressed by immune cells and has been implicated
in mediating leukocyte-endothelium adhesion (Luissint
et al. 2008), while HGF and INFB are multifunctional
cytokines implicated in innate immune responses and
tissue repair (Le Page et al. 2000; Mungunsukh et al. 2014).
Significantly, the prostaglandin E2 (PE2) receptor encoded
by PTGER2 is implicated in AD since microglial PE2—
a metabolite of arachidonic acid—has been identified

as a participant in context-dependent pro- and anti-
inflammatory signaling pathways during the early stages
of AD progression (Johansson et al. 2015; Pradhan et al.
2017).

STRING interactome analysis revealed relatively poor
connectivity within this module (Fig. 3), suggesting
a disruption of parallel rather than interconnected
pathways associated with putative adhesion dysfunc-
tion. However, G protein-coupled receptor activity
and signal transduction were major themes of the
enriched molecular and biological processes, whereas
enriched protein domains included protein–protein
binding motifs such as Kelch motifs, which have been
shown to regulate receptor activity (Marshall et al. 2011)
(Table 4). Curiously, sensory perception processes were
also identified, and the most highly correlated gene in
the midnight blue module was OR5D13, a segregating
gene/pseudogene (i.e., expressing functional, protein-
encoding, and nonfunctional alleles) member of the
G protein-coupled olfactory receptor superfamily. The
association of a chemosensory gene with expression
profiles in frontal cortex seems counterintuitive, but a
recent longitudinal study of archived diffusion-weighted
imaging and GWAS datasets from ADNI identified SNPs
in OR5D13, as well as several other OR genes, as among
the top 30 genetic variants associated with changes in
global structural connectivity across subjects with NCI,
MCI, or AD (Elsheikh et al. 2020). The expression of
olfactory receptors in multiple peripheral and central
tissues suggests that this diverse family of receptors
responds to different ligands in a context-dependent
manner beyond their role in odorant detection (Ferrer
et al. 2016). For instance, in vitro and in vivo studies
have shown that olfactory receptors regulate 1) the
induction of cell adhesion in both homo- and heterotypic
receptor expression paradigms (Richard et al. 2013) and
2) myocyte migration and adhesion during myogenesis
and fiber branching (Griffin et al. 2009).

Gene expression in the gray module was positively
associated with CERAD, NIA-Reagan, and Braak NFT
diagnostic criteria (P < 0.04), with pathway enrichment
for responses to hypoxia and oxidative stress. This is par-
ticularly intriguing since this module represents genes
that were unassigned to the other modules. This finding
may indicate an overrepresentation of genes correlating
positively with increasing pathological severity that are
involved in regulating pathways such as respiration and
redox homeostasis. The identification of biological and
molecular processes related to glutathione S-transferase
activity by STRING analysis (Supplementary Table 1)
supports this possibility (Jakoby 1978). The extent of
cerebrovascular lesions has been increasingly recognized
as a driving force in mediating the impact of global
pathological change on the onset and extent of cognitive
impairment (Arvanitakis et al. 2011), whereas oxidative
stress—whether as a result of local hypoxic events or
metabolic dysregulation—has long been recognized as an

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac001#supplementary-data
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important effector pathway during disease progression
(Lovell and Markesbery 2007).

To our knowledge, this is the first WGCNA of brain tis-
sue expression profiles using the well-established RROS
cohort to identify these three specific pathways associ-
ated with clinical neuropathologic disease severity dur-
ing the progression of AD. Moreover, they may repre-
sent key processes impacting the integrity of frontal
cortex activity in mediating executive function and the
performance of higher cognitive connectomes such as
the default mode network. Notably, a recent WGCNA of
microarray data from control, MCI, and AD whole blood
samples revealed that modules correlated to diagnos-
tic progression with pathway enrichment for increased
insulin resistance, leukocyte transendothelial migration,
and “positive regulation of oxidative stress-induced neu-
ron death (Tang and Liu 2019).” This supports our findings
and suggests that the detection of novel molecules in
peripheral fluid that are involved in these pathways may
be candidate biomarkers of disease.

Our results are also consistent with other WGCNA
studies related to AD that found only a single or few
number of total modules significantly associated with
clinical diagnostic group (Tao et al. 2020; Qin et al. 2021;
Wang et al. 2021; Zhou et al. 2021; Zhang, Liu, et al.
2021) or neuropathologic diagnostic criteria (Sun et al.
2019; Zhang, Shen, et al. 2021). In contrast, two additional
studies have also identified modules associated with
MMSE scores (Liang et al. 2018; Sun et al. 2019). The
main pathways associated with these modules include
proteasome structure and function (e.g., PSMA4), signal
transduction (e.g., GRIK1) and trafficking (e.g., RAB31),
chaperones (e.g., DNAJA1), ribosome structure and func-
tion (e.g., RPS3A), oxidative stress (e.g., metallothioniens
MT1 and MT2), and CNS development (e.g., NOTCH2)
(Liang et al. 2018; Sun et al. 2019; Milind et al. 2020;
Tao et al. 2020; Zhang, Liu, et al. 2021), thus highlighting
the relative novelty of the present report. The reasons
why our study did not identify these pathways and/or
hub genes, or why our significantly correlated modules
were not associated with MMSE or the RROS-specific
GSC, are unclear. However, these differences may relate
to: 1) our focus on BA10, which is unique to date; 2)
our relatively stringent inclusion/exclusion criteria; or
3) differences in significant results based upon false-
rate discovery algorithms applied to variable numbers of
groups, sample sizes, and different microarray platforms
across these studies.

A caveat for the present study is that a significant
proportion of NCI subjects displayed high AD pathology,
so we cannot rule out the possibility that many of the
co-expressed gene families correlating with clinical or
pathological disease progression reflected compensatory
responses related to resilience, in addition to those asso-
ciated with disease pathogenesis. Future directions will:
1) perform studies with increased power to differentiate
gene expression patterns in high- and low-pathology
NCI in relation to MCI and AD as a strategy for further

pinpointing markers of resilience; and 2) seek to val-
idate and understand the biological and mechanistic
significance of these co-expressed gene networks in AD
beyond their statistical correlation with diagnostic vari-
ables, which may also prove to have diagnostic and/or
therapeutic implications.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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